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ABSTRACT 
 
     This study proposes a nonlinear analysis method for truss structures using deep-
learned truss elements. Truss structures can fail when subjected to extreme load due to 
buckling. Conventional truss elements used when modeling truss structures cannot 
represent buckling behavior. To consider buckling, beam elements need to be used, but 
they require a higher degree of freedom compared to truss elements. Furthermore, the 
nonlinear analysis of complex structures may encounter challenges related to 
convergence and computational time. In this study, we propose a new nonlinear analysis 
method for truss elements capable of representing buckling behaviors. This approach 
significantly reduces the degrees of freedom required in nonlinear finite element analysis 
and improves the convergence and computational efficiency. 
 
1. INTRODUCTION 

 
The collapse of most structures, particularly slender structures like cables, bars, 

and thin shells, can be attributed to nonlinear behavior. When the slender structure is 
subjected to compressive loads, it becomes susceptible to a phenomenon called 
buckling. Buckling analysis is crucial for the truss structures, which are typically 
composed of reinforcing bars that primarily experience axial loads. To prevent such 
failures, it is essential to analyze the buckling behavior of truss structures accurately. 

Thai (2009) conducted a study on improving the Newton-Raphson method to 
improve the accuracy of nonlinear analysis of truss structures. Since nonlinear analysis 
uses an incremental-iterative solution, it has a computationally expensive problem. 
Recently, research is being conducted to replace Newton-Raphson's iterative calculation 
procedure using neural networks and machine learning (Mai 2021). Bidmeshki (2021) 
used a genetic algorithm, and Ojha (2023) used a heuristic optimization algorithm to 
replace Newton-Raphson's iterative calculation procedure, thereby increasing the 
efficiency of nonlinear analysis of truss structures. However, the truss elements, which 
only transmit axial forces, cannot account for structural bending, making the analysis of 
buckling behavior difficult. Beam elements (Yoon K 2014, 2015, Kim HJ 2020, 2021) that 
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can implement bending have more degrees of freedom than truss elements, and have 
the disadvantage of poor convergence in complex structures. Many studies have been 
conducted to improve the performance of finite elements using machine learning (Jeong 
J 2020, 2022). In the analysis of truss structure, research using deep learning is being 
conducted. 

In this study, buckling analysis is performed by selecting a representative 
member (length, cross-section etc.) and applying it to a single beam with initial 
imperfection. The hysteresis response obtained as a result is trained through a deep 
learning algorithm to perform buckling analysis of truss elements. 
 
2. PROPOSED NONLINEAR ANALYSIS METHOD OF TRUSS STURCTURE 
 
2.1 A Data-driven truss element 
 

 

Fig. 1 Overview of a data-driven truss element 
 

Fig. 1 is an overview of the methodology for a data-driven truss element capable 
of representing buckling behavior. This truss element constructs the stiffness matrix ( K ) 
and internal force vector ( F ) from the load-displacement curve obtained through the 
beam buckling analysis. 

 
2.1.1 Nonlinear elastic behavior 

 
 

Fig. 2 Shallow 2-bar truss example 
 

In order to check whether the proposed truss element represents buckling 
behavior in the elastic region, a shallow 2-bar truss example is constructed as shown in 
Fig. 2 and nonlinear analysis is performed. The load-displacement curve at point p is 
obtained. 

 
2.1.2 Nonlinear plastic behavior 
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In order to check whether the proposed truss element represents buckling 
behavior in the plastic region, the same example as in 2.1.1 is constructed and nonlinear 
analysis is performed. A bilinear elastic-plastic material model is used, and the yield 
strength is 200.2 MPa. In plastic analysis, since the material is permanently deformed 
under load, the history of the load must be considered. Perform the same loading-
unloading analysis as the load history received by the truss structure in 2.1.1 to obtain 
the hysteresis curve. By applying this to the proposed truss element, the load-
displacement curve at point p was obtained, and it was confirmed that the behavior is 
similar to that of the beam. 
 
2.2 Deep-learned truss element 
 

Calculating hysteresis each time the structure of the truss changes can be 
computationally inefficient, especially for large and complex truss systems. Various load-
displacement hysteresis datasets are generated and used for the deep learning model 
training. 

 
2.2.1 Training dataset for deep-learned truss element 
 

 
 

Fig. 3 Single beam with initial imperfection 
 

To generate various load-displacement hysteresis training datasets, the Beam 
element of ADINA 9.8 is used. Fig.3 is a single beam with initial imperfection, and 
buckling analysis is performed. In order to generate various hysteresis data, irregular 
displacement loads are defined using the superposition of sine function. 

 
2.2.2 Training model for deep-learned truss element 
 

For load-displacement hysteresis training, this paper use DNN (Deep Neural 
Network) known as the basic model and LSTM (Long Short-Term Memory) suitable for 
processing sequence data. In the case of LSTM, training proceeds by predicting the next 
step according to the state change of the truss after the first load step by using the training 
method called rolling prediction and sequence update. 
 
3. CONCLUSIONS 
 

This study proposes a deep-learned truss element capable of representing 
buckling behavior. The data-driven truss element is constructed by calculating the 
stiffness matrix and internal force vector from the buckling analysis results of a single 
beam. As a result of nonlinear analysis in the elastic and plastic regions using the data-
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driven truss element, the feasibility that the same buckling behavior as the beam can be 
implemented is confirmed. 

In the plastic region, a loaded member is permanently deformed, so it is essential 
to consider the past load history. Various load-displacement hysteresis data are 
generated, and the predicted value of the previous step is used as an input to predict the 
value of the next step using DNN and LSTM model. The deep-learned truss element that 
calculates the stiffness matrix and internal force vector using the LSTM model prediction 
value whenever the load of the truss structure changes is proposed. 
 
ACKNOWLEDGEMENTS 
 

This research was supported by the Defense Challengeable Future Technology 
Program (No. 915071101) of Agency for Defense Development in 2023. 
 

REFERENCES 

Thai, H. T., & Kim, S. E. (2009). Large deflection inelastic analysis of space trusses using 
generalized displacement control method. Journal of Constructional Steel 
Research, 65(10-11), 1987-1994. 

Mai, H. T., Kang, J., & Lee, J. (2021). A machine learning-based surrogate model for 
optimization of truss structures with geometrically nonlinear behavior. Finite Elements 
in Analysis and Design, 196, 103572. 

Bidmeshki, S., & Habibi, A. (2021). A new procedure for post-buckling analysis of plane 
trusses using genetic algorithm. Steel and Composite Structures, 40(6), 817-828. 

Ojha, V., Pantò, B., & Nicosia, G. (2023). Adaptive search space decomposition method 
for pre-and post-buckling analyses of space truss structures. Engineering Applications 
of Artificial Intelligence, 117, 105593. 

Yoon, K., & Lee, P. S. (2014). Nonlinear performance of continuum mechanics based 
beam elements focusing on large twisting behaviors. Computer Methods in Applied 
Mechanics and Engineering, 281, 106-130. 

Yoon, K., Lee, P. S., & Kim, D. N. (2015). Geometrically nonlinear finite element analysis 
of functionally graded 3D beams considering warping effects. Composite 
Structures, 132, 1231-1247. 

Jung, J., Yoon, K., & Lee, P. S. (2020). Deep learned finite elements. Computer Methods 
in Applied Mechanics and Engineering, 372, 113401. 

Jung, J., Jun, H., & Lee, P. S. (2022). Self-updated four-node finite element using deep 
learning. Computational Mechanics, 69(1), 23-44. 

Kim, H. J., Yoon, K., & Lee, P. S. (2020). Continuum mechanics based beam elements 
for linear and nonlinear analyses of multi-layered composite beams with interlayer 
slips. Composite Structures, 235, 111740. 

Kim, H. J., Lee, D. H., Yoon, K., & Lee, P. S. (2021). A multi-director continuum beam 
finite element for efficient analysis of multi-layer strand cables. Computers & 
Structures, 256, 106621. 


